Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 333: 121981, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494233

RESUMO

In view of health and environmental concerns, together with the upcoming restrictive regulations on per- and polyfluoroalkyl substances (PFAS), less impactful materials must be explored for the hydrophobization of surfaces. Polysaccharides, and especially chitosan, are being explored for their desirable properties of film formation and ease of modification. We present a PFAS-free chitosan superhydrophobic coating for textiles deposited through a solvent-free method. By contact angle analysis and drop impact, we observe that the coating imparts hydrophobicity to the fabrics, reaching superhydrophobicty (θA = 151°, θR = 136°) with increased amount of coating (from 1.6 g/cm2). This effect is obtained by the combination of chemical water repellency of the modified chitosan and the nano- and micro-roughness, assessed by SEM analysis. We perform a comprehensive study on the durability of the coatings, showing good results especially for acidic soaking where the hydrophobicity is maintained until the 8th cycle of washing. We assess the degradation of the coating by a TGA-IR investigation to define the compounds released with thermal degradation, and we confirm the coating's biodegradability by biochemical oxygen consumption. Finally, we demonstrate its biocompatibility on keratinocytes (HaCaT cell line) and fibroblasts (HFF-1 cell line), confirming that the coating is safe for human skin cells.


Assuntos
Quitosana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Solventes , Fibroblastos , Ácidos
2.
Carbohydr Res ; 533: 108938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713734

RESUMO

The development of human tissue models for regenerative medicine and animal-free drug screening requires glycosylated biomaterials such as collagen. An easy and fast biomaterial glycosylation method exploiting Horseradish Peroxidase (HRP) phenol coupling reaction is proposed. The protocol is adaptable to any polymer functionalized with phenol residues or tyrosine containing proteins. As a model the tyrosine residues on collagen films were functionalized with salidroside, a natural ß-glucoside with a phenol in the aglycone. Scanning Electron Microscope (SEM) and contact angle analysis revealed the influence of glycosylation on the sample's morphology and wettability. Preliminary biological evaluation showed the cytocompatibility of the glucosylated collagen films.


Assuntos
Fenóis , Tirosina , Humanos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Fenol , Colágeno
3.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679168

RESUMO

Additive manufacturing technologies are developed and utilized to manufacture complex, lightweight, functional, and non-functional components with optimized material consumption. Among them, vat polymerization-based digital light processing (DLP) exploits the polymerization of photocurable resins in the layer-by-layer production of three-dimensional objects. With the rapid growth of the technology in the last few years, DLP requires a rational design framework for printing process optimization based on the specific material and printer characteristics. In this work, we investigate the curing of pure photopolymers, as well as ceramic and metal suspensions, to characterize the material properties relevant to the printing process, such as penetration depth and critical energy. Based on the theoretical framework offered by the Beer-Lambert law for absorption and on experimental results, we define a printing space that can be used to rationally design new materials and optimize the printing process using digital light processing. The proposed methodology enables printing optimization for any material and printer combination, based on simple preliminary material characterization tests to define the printing space. Also, this methodology can be generalized and applied to other vat polymerization technologies.

4.
Adv Colloid Interface Sci ; 294: 102470, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34186300

RESUMO

Contact angle measurement is an effective way to investigate solid surface properties. The introduction of low-cost digital cameras, as well as software and libraries for image analysis, has made contact angle measurement potentially accessible to every laboratory. In this review, we provide a comparison of the main methods developed to evaluate contact angle from digital images, including the so-called Young-Laplace method, the circle and polynomial fittings, as well as the mask method. All methods have been implemented and compared analyzing virtual and real drop images in an open-source software, Dropen, developed as an app in MATLAB environment. The code enables single image analysis evaluation, for the robust automatic identification of the contact points and contact angle evaluation, with the goal of minimizing user inputs, automatizing the process and facilitating measurements for all users, from less experienced to advanced wetting experts. Dropen and its code are made available at BOA, the Bicocca Open Access public repository, for use and further development.

5.
Chempluschem ; 84(4): 368-373, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31939220

RESUMO

Copper based layers were fabricated on gold/silicon (100) substrates by using square pulse electrodeposition at different deposition temperatures. The predominant crystalline plane on Cu2 O samples at temperatures higher than 30 °C is (111), which is the most hydrophobic facet of Cu2 O cubic structure. Different crystallite structures such as semivertical leaves, fractal trees, and octahedral pyramids were formed on the surface. These water-repellent samples have hierarchical structures, including octahedral pyramid microstructures with small spherical balls on them and well-branched micrometric vertical leaves on the surface. They provide a suitable surface for trapping air pockets inside the structure and increasing the water contact angle up to 154°. This approach may be applicable to the large-scale preparation of water-repellent surfaces as superhydrophobicity can be achieved in a one-step deposition process without any secondary modifications.

6.
Chempluschem ; 82(11): 1351-1358, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31957184

RESUMO

The formation of porous nanostructures by using a templateless electropolymerization process with thieno[3,2-b]thiophene as a monomer and two different deposition methods (galvanostatic and pulse potentiostatic deposition) has been studied. The wettability, roughness, and morphology of the surfaces are reported. The surfaces prepared by galvanostatic deposition show hydrophilic behavior (θw ≈80°) that is highly dependent on the roughness. Nanoseeds were formed in the first instances followed by the formation of large microcapsules and hollow spheres. Indeed, as the deposition time and current density increase, the size and amount of structures also increase. By pulse deposition, the surfaces are hydrophobic (θw ≈100°) and only show a roughness dependence if the mean surface roughness is >1.5 µm. The surfaces are formed from nanodomes and nanospheres, but they are less structured than that of surfaces produced by the galvanostatic method. The formation of these structures is directly related to the amount of gas released from trace water in situ during electropolymerization, which is highly dependent on the electrochemical method chosen. The formation of new seeds is highly favored by the galvanostatic method, whereas their growth is favored by the pulse deposition method. This is the first study on the use of galvanostatic and pulse deposition methods, with potential applications in surface chemistry. Thieno[3,2-b]thiophene proved to be very versatile to form different structures with potential applications as water harvesting and separation membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...